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Fig. 8. Spatially electrical parameter uniformity of ITO-stabilized ZnO
TFTs with hybrid-phase microstructural channels. Thirty devices that
uniformly distributed over a 4-in Si wafer are tested.

Fig. 9. (a) Transfer curve evolution and (b) Vth and SS variation of devices
without any passivation, which are placed in air for 10 weeks.

especially when they are analyzed in the dimension of TFT
channels. Therefore, such hybrid-phase microstructural TFTs
are believed to be compatible with large-area applications.

Furthmore, the ITO-stabilized ZnO TFTs exhibit robustness
to the atmospheric ambient, as a result of their unique hybrid-
phase microstructural channels. For many ZnO-based devices,
there generally exist the ambient interactions at the exposed
surface and grain boundaries of ZnO. These oxygen and
water adsorption/desorption effects are always accompanied
by electron capture/release and trap-state generation, resulting
in a severe ambient instability [36], [47], [48]. However, Fig. 9
illustrates that the hybrid-phase microstructural ITO-stabilized
ZnO TFTs without any passivation can be operated normally

Fig. 10. Transfer curve evolution of the hybrid-phase microstructural
ITO-stabilized ZnO TFTs under repeated cycling tests.

only with a small Vth fluctuation even after 10 weeks. It is
observed that Vth of as-fabricated devices drops sharply from
about 0.5 V to below zero after half a day, and then its value
fluctuates within a narrow range. The ambient interactions
seem to achieve a dynamic equilibrium eventually. In addition,
there are no stretch-out phenomena observed in subthreshold
region of transfer curves, and the extracted values of SS
always keep in the vicinity of 0.1 V/decade. It means that
few defects are created during this period. Compared with the
situations in polycrystalline ZnO and a-IGZO TFTs [49], [50],
which are deteriorated significantly after a long term, the TFTs
in this work perform extremely atmospheric ambient stable.
One plausible explanation is that a large portion of origi-
nally exposed ZnO-based backsurface is encapsulated by ITO-
involved material, which is less sensitive to the oxygen and
water adsorption/desorption processes. Moreover, the grain
boundary density in hybrid-phase microstructure is diluted.
Therefore, the ambient interactions can be well suppressed,
which enables the in situ passivation of channels by them-
selves.

At last, Fig. 10 shows the transfer curve evolution of the
hybrid-phase microstructural ITO-stabilized ZnO TFTs under
repeated cycling tests. It is found that besides the excellent air
stability, such devices also exhibit reliable repeated switching
behavior with a slight Vth shift of 0.8 V after 3001 sweeping
cycles. This is essential in the practical applications.

IV. CONCLUSION

In summary, the properties of hybrid-phase microstructural
ITO-stabilized ZnO thin films and the related TFTs were inves-
tigated. The optically extracted Urbach energy of thin films
revealed less band-tail state trapping compared with that of
amorphous thin films, theoretically contributing to higher drift
mobility. By adjusting the co-sputtering parameters, the basic
top-contact bottom-gated TFTs with optimal active layers
could be obtained when PO2 and PDC were set as 40% and
120 W, respectively. The corresponding TFTs exhibited uni-
form electrical performance with a typical field-effect mobility
of 26.1 cm2/V·s, threshold voltage of 0.5 V, ON–OFF ratio of
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over 109, and extremely low SS of 89 mV/decade. It was
suggested that both material composition and microstructure
of active layers should be well taken into the consideration for
TFT performance enhancement.
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